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Abstract
We describe the distribution of distances between parked cars as a solution of
certain Markov processes and show that its solution is obtained with the help
of a distributional fixed point equation. Under certain conditions the process is
solved explicitly. The resulting probability density is compared with the actual
parking data measured in the city.

PACS number: 05.20.−y

We focus on the spacing distribution between cars parked parallel to the curb somewhere in
the city center. We will assume that the street is long enough to enable a parallel parking of
many cars. Moreover we assume that there are no driveways or side streets in the segment of
interest and that the street is free of any kind of marked parking lots or park meters. So the
drivers are free to park the car anywhere provided they find an empty space to do it. Finally
we assume that many cars are cruising for parking. So there are no free parking lots and a car
can park only when another car leaves the street.

The standard way to describe random parking is the continuous version of the random
sequential adsorption model known also as the ‘random car parking problem’—see [1, 2] for
review. In this model it is assumed that all cars have the same length l0 and park on randomly
chosen places. Once parked the cars do not leave the street. This model leads to predictions
that can be easily verified. First of all it gives a relation between the mean bumper-to-bumper
distance D and the car length: D ∼ 0.337l0. Further the probability density Q(D) of the car
distances D behaves like [3–6]

Q(D) ≈ −ln(D). (1)

To test this results real parking data were collected recently in the center of London
[7]. The average distance between the parked cars was 152 cm which fit perfectly with the
relation D ∼ 0.337l0 for l0 = 450 cm. The gap density (1) was however fully incompatible
with the observed facts. The relation (1) gives Q(D) → ∞ for D → 0 . The data from
London showed however that in reality Q(D) → 0 as D → 0. Rawal and Rogers [7] used
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therefore an amended version of the model with a car re-positioning process (describing the car
manoeuvering) to fit the data. Later Abul-Magd [8] pointed out that the car spacings observed
in London can be well described by the Gaussian unitary ensemble of random matrices
[9, 10] if the parked cars are regarded as particles of a one-dimensional interacting gas. In
both cases the authors assumed that Q(D) ∼ D2 for small D. However the origin of the
particular car re-positioning or car interaction remained unclear.

Our aim here is to show that the car parking can be understood as a simple Markov
process. The main difference to the previous approach is that we enable the parked cars to
leave the street vacating the space for a new car to park there. The distance distribution is
obtained as a steady solution of the repeated car parking and car leaving process.

To derive the equations we describe a car parking on a roundabout junction (we know that
it is not allowed to park there, but it simplifies the consideration). The idea is simple: assume
that all cars have the same length l0 and park on a roundabout junction with a circumference
L. The length L is chosen in interval 3l0 < L < 4l0) so that maximally three cars can park
there. These cars define three spacings D1,D2,D3 with the constrain

D1 + D2 + D3 + 3l0 = L. (2)

The parking process goes as follows: one randomly chosen car leaves the street and the two
adjoining lots merge into a single one. In the second step a new car parks into the empty space
and splits it again into two smaller lots. Such fragmentation and coagulation processes were
discussed intensively since they apply for instance to the computer memory allocation—see
[11] for review.

If the car leaves and the neighboring spacings—say the spacings D1,D2—merge into a
single lot D we get

D = D1 + D2 + l0. (3)

When a new car parks to D it splits it again into two lots D̃1, D̃2:

D̃1 = a(D − l0) D̃2 = (1 − a)(D − l0), (4)

where a ∈ (0, 1) is a random variable with a probability density P(a). The distribution
P(a) describes the parking preference of the driver. We assume that all drivers have identical
preferences, i.e. identical P(a). (The meaning of the variable a is straightforward. For a = 0
the car parks immediately in front of the car delimiting the parking lot from the left without
leaving any empty space (very unworthy way to park). For a = 1/2 it parks directly to the
center of the lot D and for a = 1 it stops exactly behind the car on the right.) Combining (3)
and (4) lead to

D̃1 = a(D1 + D2) D̃2 = (1 − a)(D1 + D2) (5)

and the car length l0 drops out. Taking the first of these equations and using the relation (2)
we finally obtain

D̃1 = a(L − 3l0 − D3). (6)

The pair D1,D2 is in no way particular. The same works when dealing with an arbitrary pair
of Dk,Dl ; k �= l; k, l = 1, 2, 3. The last step is now easy. Suppose that after many steps a
steady state is reached. Then the distributions of Dk, k = 1, 2, 3 are identical and the distances
Dk can be regarded as copies of a random variable D. The equation (6) becomes

Dn+1 = an(L − 3l0 − Dn), (7)

where Dn denotes the variable D after n steps and an are independent identically distributed
random variables with a common probability density P(a). So Dn, n = 1, 2, 3, . . . represents
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a simple Markov chain. We are interested in the solution of (7) in the limit n → ∞. One can
show easily [12] that the limiting variable D∞ solves the equation D∞ � a(L − 3l0 − D∞).
The symbol � means that left and right-hand sides of the equation have identical probability
distributions. The constant L−3l0 can be scaled out and set to 1. The final probability density
Q(D) of D solves the equation

D � a(1 − D). (8)

Distributional fixed point equations of this type are mathematically well studied—see for
instance [13–15] although not much is known about their exact solutions. They are used for
instance in the insurance and financial mathematics and represent the value of a commitment
to make regular payments [16]. (In the actuarial mathematics such equations are called
perpetuities.) But they arise also in the relation with recursive algorithms such as the selection
algorithm Quickselect, see, e.g. [17, 18] and in many other areas.

For us the key point is the choice of the probability distribution P(a) characterizing the
parking behavior of the driver. It is reasonable to use a distribution with P(0) = P(1) = 0.
A natural candidate is the β distribution

P(a) = β(α1, α2, a) = �(α1 + α2)

�(α1)�(α2)
aα1−1(1 − a)α2−1 (9)

with α1, α2 > 1. Independent β distributed random variables fulfil a couple relations that will
be helpful for us. [19, 20]. In particular the following holds:

Statement 1. Let x1, x2 be independent random variables. Further let x1 be β(α1, α1 + α2, x)

and x2 be β(α3, α2, x) distributed. Then the variable x3 := x2 − x2x1 has a β(α3, α1 + α2, x)

distribution for all α1, α2, α3 > 0.
Taking c = a we see that the variables x1 and x3 are equally distributed. In other words

the above statement leads to a solution of equation (8) as follows:

Statement 2. Let P(a) be given by (9). Then the probability density Q(D) solving equation (8)
is given by Q(D) = β(α1, α1 + α2,D).

For parking it is natural to assume a symmetric P(a): P(a) = P(1 − a), i.e. the drivers
are not biased to park more closely to a car adjacent from the behind or from the front. A
β distribution is symmetric if α1 = α2. So we will take P(a) = β(α, α, a) which leads to
the solution of (8): Q(D) = β(α, 2α,D). The parameter α is free and can be in principle
fitted to describe the parking data. However the behavior of Q(D) for small D display the
capability of the driver to exploit small distances during the parking maneuver. It is related
to the general human ability to estimate small distances since the collision avoidance during
parking is guided visually. Assuming this virtue to be shared by all drivers we finally come to
the conclusion that the behavior of Q(D) for small D should be generic, i.e. independent on
the particular city or situation.

These arguments eventually fix the parameter α since Q(D) = β(α, 2α,D) ∼ Dα−1 as
D → 0. The observations from London [7, 8] show that Q(D) ≈ D2 for small D leading to
α = 3.

Rescaling finally the variable D to achieve a mean distance equal to 1 we get
Q(D) = (1/3)β(3, 6,D/3). Please note that the distribution is fixed (by the assumption
that its behavior for small D is generic) and does not contain any free parameter.

To compare this prediction with actual parking data we measured the bumper-to-bumper
distances between cars parked on two different streets in the center of Hradec Kralove (Czech
Republic). Both streets were long enough and usually without any free parking places. So
a new car was able to park there only when another car left the street. In addition the mean
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Figure 1. The measured distance distribution for cars parking in the center of Hradec Kralove is
compared with the solution of equation (8) with a distribution P(a) = β(3, 3, a). The measured
data were scaled to a mean distance equal to 1.

parking time was quite short so the parked cars exchanged frequently during the day. We
measured overall 1200 car spacings. The measured mean car distance was 140 cm. It is
slightly less then the value 154 cm reported in [7], but we have smaller cars in the Czech
Republic.

The result is plotted in figure 1 and the agreement with the prediction is reasonable. It
has to be notified that the distribution Q(D) = (1/3)β(3, 6,D/3) is quite close to the result
obtained for the Gaussian unitary ensemble and used in [8]. But Q(D) = 0 for D > 3. This
means that in the model there are no parking lots larger than three. For the actual data (due
to the scaling to D = 1) this means that there are no lots longer than 420 cm. This is really
a favorable property, since such large lots are immediately occupied by a new car and do not
persist. Such feature is however not present in the random matrix description [8] since this
distribution has a long tail.

The presented model is a simplification. In reality the cars are not parking on roundabout
junctions and their lengths are not equal. But nevertheless the simplified and solvable model
leads to reasonably good agreement with the data.

To summarize: we have shown that car parking can be well described by a simple Markov
process. The limiting distribution of this process is solvable and leads to a prediction of the
car distance distribution which is in agreement with the actual data measured on the streets of
the city Hradec Kralove.
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